Jump to content

Irrationell tøl

Frá Wikipedia, hin frælsa alfrøðin
Talskipanir í støddfrøði.
Grundleggjandi

Teljitøl {0,1,2,3..}
Primtøl { 2,3,5,7,11,.. }
Heiltøl {..-1,0,1,..}
Desimaltøl ( 1,5; 0,454; ...)
Rationell tøl
Irrationell tøl
Reel tøl ()
Imaginer tøl
Kompleks tøl (),
Algebraisk tøl
Transsendent tøl

Talsløg og serstøk tøl

Nominel
Raðtøl stødd, positión {n}
Kardinaltøl {}
p-adiskt tøl
Heiltalsrøðir
Støddfrøðiligir konstantar
Stór tøl
Endaleys

Irrationell tøl (óráðin tøl) er øll tøl, sum ikki kunnu verða skrivað sum brot. Hon er tølini, sum ikki ber til at skriva sum brot. Dømi um irrational tøl eru t.d.: 
, , , 3, 4. Eisini talið π er irrationalt tal.

Eitt og hvørt brot knýtir at sær eitt punkt á tallinjuni, og hesi punkt eru óendliga tøtt. Spurningurin er nú, um til eru punkt á tallinjuni, sum ikki hava nakað brot knýt at sær. Og so er: tølini, sum knýtt eru at hesum punktum, verða nevnd irrationell tøl. Tey eru óendaliga nógv í tali. Grikkar vistu av tølum uttan fyri (rationell tøl). Við kenda setninginum, sum Pythagoras legði navn til, men sum bábylonar vistu um túsund ár frammanundan, eydnaðist teimum at vísa, at ikki kundi verða skrivað um brot.